OPTIMASI IMAGE CLASSIFICATION PADA JENIS SAMPAH DENGAN DATA AUGMENTATION DAN CONVOLUTIONAL NEURAL NETWORK

نویسندگان

چکیده

Garbage is useless goods/materials used normally or specifically in production, goods damaged during production materials which mainly come from households. Moreover, inorganic waste very difficult and takes a longer time to be decomposed by the soil. The lack of public knowledge about classification types how process it causes serious problem Indonesia. Therefore, this research creates type recognition program using Convolutional Neural Network (CNN) algorithm, can detect recognize objects an image. CNN technique inspired way mammals, humans, produce visual perception. included deep neural network because its high depth widely applied imagery. 2 Types classification, namely organic waste. implementation garbage image uses test models, Sequential on top VGG16 runs Google Collaboratory application, Keras. After carrying out Augmentation process, number data study was 1489 images training 182 testing resulting evaluation value with accuracy 90.97% loss 0.307 model, 97.99% 0.069 model. VGG16.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Klasifikasi Data Cardiotocography Dengan Integrasi Metode Neural Network Dan Particle Swarm Optimization

Backpropagation (BP) adalah sebuah metode yang digunakan dalam training Neural Network (NN) untuk menentukan parameter bobot yang sesuai. Proses penentuan parameter bobot dengan menggunakan metode backpropagation sangat dipengaruhi oleh pemilihan nilai learning rate (LR)-nya. Penggunaan nilai learning rate yang kurang optimal berdampak pada waktu komputasi yang lama atau akurasi klasifikasi yan...

متن کامل

Convolutional Neural Network for Image Classification

Neural network, as a fundamental classification algorithm, is widely used in many image classification issues. With the rapid development of high performance computing device and parallel computing devices, convolutional neural network also draws increasingly more attention from many researchers in this area. In this project, we deduced the theory behind back-propagation neural network and impl...

متن کامل

Convolutional Neural Network Based Chart Image Classification

Charts are frequently embedded objects in digital documents and are used to convey a clear analysis of research results or commercial data trends. These charts are created through different means and may be represented by a variety of patterns such as column charts, line charts and pie charts. Chart recognition is as important as text recognition to automatically comprehend the knowledge within...

متن کامل

Image Classification using Convolutional Neural Network

Convolutional Neural Networks (CNNs) have been established as a powerful class of models for image recognition problems. Inspired by a blog post [1], we tried to predict the probability of an image getting a high number of likes on Instagram. We modified a pre-trained AlexNet ImageNet CNN model using Caffe on a new dataset of Instagram images with hashtag ‘me’ to predict the likability of photo...

متن کامل

A Radon-based Convolutional Neural Network for Medical Image Retrieval

Image classification and retrieval systems have gained more attention because of easier access to high-tech medical imaging. However, the lack of availability of large-scaled balanced labelled data in medicine is still a challenge. Simplicity, practicality, efficiency, and effectiveness are the main targets in medical domain. To achieve these goals, Radon transformation, which is a well-known t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Jurnal Sistem Informasi dan Informatika

سال: 2022

ISSN: ['2622-6375', '2622-6901']

DOI: https://doi.org/10.47080/simika.v5i2.1913